Cómo citar
Ríos, L. A. (2015). Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos. Revista Agunkuyâa, 2(1), 42 - 62. Recuperado a partir de https://revia.areandina.edu.co/index.php/Cc/article/view/302

Resumen

Se realizó una revisión general sobre la disponibilidad de materias primas en Colombia y de las diversas etapas de transformación que se recomiendan para la producción de etanol lignocelulósico en la actualidad. A lo largo de la exploración teórica realizada, se hizo una comparación con reportes existentes sobre la Eichhornia crassipes, con la finalidad de exponer diferencias y similitudes que permitan exaltar la importancia de ampliar las opciones de materias primas a la hora de considerar producir bioetanol. En lo referente a pretratamientos y métodos de hidrólisis de biomasa lignocelulósica, se hizo énfasis en los principios que rigen estos procedimientos. En este trabajo igualmente se presentan resultados preliminares sobre el aprovechamiento del jacinto de agua proveniente de embalses de las Empresas Públicas de Medellín (EPM) para la producción de bioetanol. Este esfuerzo responde a la necesidad de agrupar información valiosa, que ofrezca una perspectiva sobre las tecnologías que existen para producir este tipo de biocombustible y de cómo se han aplicado a diferentes fuentes, en particular el jacinto de agua.

Abstract

A general review was conducted about the availability of raw materials in Colombia and processing steps recommended in lignocellulosic ethanol production currently. With theoretical exploration was made a comparison with existing reports about the Eichhornia crassipes, in order to explain differences and similarities that allow exalt the importance of expanding commodity options when considering producing bioethanol. Regarding pretreatment and hydrolysis methods lignocellulosic biomass, the emphasis was on the principles governing these procedures. This paper also presents results of the utilization of Water Hyacinth reservoirs of Empresas Públicas de Medellín (EPM) for the production of bioethanol. This effort responds to the need to bring together valuable information that provides an overview of the technologies available to produce this type of biofuel and how they have been applied to various sources, in particular the Water Hyacinth. 

Keywords: Lignocellulosic ethanol, Eichhornia crassipes, biomass pretreatment.

Citas

Abraham, M. y G. M. Kurup (1996). Bioconversion
of tapioca (Manihotesculenta) waste
and water hyacinth (Eichhornia crassipes).
Influence of various physico-chemical
factors. Journal of Fermentation and
Bioengineering, 82 (3),: 259-263.
Aswathy, U. S., Sukumaran, R. K. et al.
Bio-ethanol from water hyacinth biomass:
An evaluation of enzymatic saccharification
strategy. Bioresource Technology, 101
(3), 925-930.
Aswathy, U. S., Sukumaran, R. K., Devi, G. L.,
Rajasree, K. P., Singhania, R. R., y Pandey,
A. (2010). Bio-ethanol from water hyacinth
biomass: an evaluation of enzymatic saccharification
strategy. Bioresource technology,
101 (3), 925-930.
Brodeur, G., E. Yau, et al. (2011). “Chemical
and Physicochemical Pretreatment of
Lignocellulosic Biomass: A Review.
“ Enzyme Research. 2011.
Cheng, K. -K., B. -Y. Cai, et al. (2008). “Sugarcane
bagasse hemicellulose hydrolysate
for ethanol production by acid recovery
process.” Biochemical Engineering Journal,
38 (1),: 105-109.
Dragone, G., S. I., Mussatto, et al. “Optimal
fermentation conditions for maximizing the
ethanol production by Kluyveromycesfragilis
from cheese whey powder”. Biomass and
Bioenergy, 35 (5),: 1977-1982.
Ganguly, A., Halder, S., Laha, A., Saha, N.,
Chatterjee, P. K. y Dey, A. (2013). Effect of
Alkali Preteatment on Water Hyacinth Biomass
for Production of Ethanol. Advanced
Chemical Engineering Research, 2 (2).
Ganguly, A., P. K., Chatterjee, et al. “Studies
on ethanol production from water hyacinthae.”
A review. “Renewable and Sustainable
Energy Reviews (0)”.
Gario, F. M., Fonseca, C. et al. Hemicelluloses
for fuel ethanol: A review. Bioresource Technology,
101 (13), 4775-4800.
Gnansounou, E. y A. Dauriat. “Techno-economic
analysis of lignocellulosic ethanol:
A review. “ Bioresource Technology, 101(13):
4980-4991.
Golias, H., Dumsday, G. J., et al. (2002).
“Evaluation of a recombinant Klebsiellaoxytoca
strain for ethanol production from
cellulose by simultaneous saccharification
and fermentation: comparison with native
cellobiose-utilising yeast strains and performance
in co-culture with thermotolerant
yeast and Zymomonasmobilis.” Journal of
Biotechnology, 96(2): 155-168.
González-García, S., M. T. Moreira, M. T.,
et al. “Comparative environmental performance
of lignocellulosic ethanol from
different feedstocks. Renewable and Sustainable
Energy Reviews, 14 (7): 2077-2085.
Hamelinck, C. N., G. v. Hooijdonk, G. V. et
al. (2005). “Ethanol from lignocellulosic
biomass: techno-economic performance in
short-, middle-and long-term”. Biomass and
Bioenergy, 28 (4): 384-410.
J. N., N. (2001). “Ethanol production from
wheat straw hemicellulose hydrolysate
by Pichiastipitis.” Journal of Biotechnology,
87 (1),: 17-27.
J. N., N. (2002). “Bioconversion of water-hyacinth
(Eichhornia crassipes) hemicellulose
acid hydrolysate to motor fuel ethanol by
xylose a “fermenting yeast.” Journal of Biotechnology,
97 (2),: 107-116.
Jeewon, L. (1997). “Biological conversion of
lignocellulosic biomass to ethanol.” Journal
of Biotechnology, 56 (1),: 1-24.
Kumar, A., L. K. Singh, L. K., et al. (2009).
“Bioconversion of lignocellulosic fraction
of water-hyacinth (Eichhornia crassipes)
hemicellulose acid hydrolysate to ethanol
by Pichiastipitis. Bioresource Technology,
100(13):, 3293-3297.
Laser, M., D. Schulman, D., et al. (2002).
“A comparison of liquid hot water and
steam pretreatments of sugar cane bagasse
Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos
Vol. 2, N. 1 enero - junio DE 2012 61
for bioconversion to ethanol.” Bioresource
Technology, 81(1),: 33-44.
Lee, S. --M. y J.-H. Lee, J. H. “Ethanol fermentation
for main sugar components of
brown-algae using various yeasts.” Journal
of Industrial and Engineering Chemistry (0).
Lee, S. -M. a y nd J.-H. Lee, J. H. “The isolation
and characterization of simultaneous saccharification
and fermentation microorganisms
for Laminaria japonica utilization.”
Bioresource Technology, 102 (10),: 5962-5967.
Lynd, L. R., Weimer, P. J. et al. (2002).
“Microbial Cellulose Utilization: Fundamentals
and Biotechnology.” Microbiology
and Molecular Biology Reviews, 66 (3), (3):
506-577.
Mabee, W. E., P. N. McFarlane, P. J., et al.
“Biomass availability for lignocellulosic
ethanol production.” Biomass and Bioenergy,
(0).
Margeot, A., B. R. Hahn-Hagerdal, B. R. et al.
(2009). “New improvements for lignocellulosic
ethanol.” Current Opinion in Biotechnology,
20 (3),: 372-380.
Mishima, D., M. Tateda, M., et al. (2006).
“Comparative study on chemical pretreatments
to accelerate enzymatic hydrolysis of
aquatic macrophyte biomass used in water
purification processes.” Bioresource Technology,
97 (16),: 2166-2172.
Öhgren, K., R. Bura , et al. (2007). A comparison
between simultaneous saccharification
and fermentation and separate hydrolysis
and fermentation using steam-pretreated
corn stover. Process Biochemistry, 42 (5),
834-839.
Olsson, L., H. R. Soerensen, H. R. et al.
(2006). Separate and Simultaneous
Enzymatic Hydrolysis and Fermentation of
Wheat Hemicellulose With Recombinant
Xylose Utilizing Saccharomyces cerevisiae.
Twenty-Seventh Symposium on Biotechnology
for Fuels and Chemicals, Humana Press,:
117-129.
Rahman, M. M., Chowdhury, A. A. et al.
(1986). “Microbial production of biogas form
organic wastes.” Journal of Fermentation
Technology, 64(1),: 45-49.
Rogalinski, T., T. Ingram, T., et al. (2008).
“Hydrolysis of lignocellulosic biomass in
water under elevated temperatures and
pressures.” The Journal of Supercritical
Fluids, 47(1),: 54-63.
Shields, S. y R. Boopathy, R.
“Ethanol production from lignocellulosic
biomass of energy cane.” International
Biodeterioration& Biodegradation,
65(1),: 142-146.
Singh, A., D. Pant, D. et al. “Key issues in life
cycle assessment of ethanol production
from lignocellulosic biomass: Challenges
and perspectives.” Bioresource Technology,
101 (13),: 5003-5012.
Spatari, S., Bagley, D. M., et al. “Life cycle
evaluation of emerging lignocellulosic ethanol
conversion technologies.” Bioresource
Technology, 101(2),: 654-667.
Srilekha Yadav, K., S. Naseeruddin S., et al.
“Bioethanol fermentation of concentrated
rice straw hydrolysate using co-culture
of Saccharomyces cerevisiae and Pichiastipitis.”
Bioresource Technology, 102 (11),:
6473-6478.
Sukumaran, R. K., Surender, V. J., et al.
“Lignocellulosic ethanol in India: Prospects,
challenges and feedstock availability.” Bioresource
Technology, 101(13),: 4826-4833.
Sun, Y. y J. Cheng, J. (2002). “Hydrolysis of
lignocellulosic materials for ethanol production:
a review.” Bioresource Technology,
83 (1),: 1-11.
Swain, M. R., S. Kar, S. et al. (2007). “Ethanol
fermentation of mahula (Madhucalatifolia
L.) flowers using free and immobilized
yeast Saccharomyces cerevisiae.” Microbiological
Research, 162 (2),: 93-98.
Takeshige, K. y K. Ouchi, K. (1995). “Reconstruction
of ethanol fermentation in perKaren
Ospino Villalba | Luis Alberto Ríos
62 enero - junio DE 2012 Vol. 2, N. 1
meabilized cells of the yeast Saccharomyces
cerevisiae.” Journal of Fermentation and
Bioengineering, 79(1),: 11-16.
Talebnia, F., D. Karakashev, D. et al.
“Production of bioethanol from wheat
straw: An overview on pretreatment,
hydrolysis and fermentation.” Bioresource
Technology, 101 (13),: 4744-4753.
Unrean, P. y F. Srienc, F. “Continuous production
of ethanol from hexoses and pentoses
using immobilized mixed cultures of Escherichia
coli strains.” Journal of Biotechnology,
150 (2),: 215-223.
Van Walsum, G., S. Allen, S. et al. (1996).
“Conversion of lignocellulosics pretreated
with liquid hot water to ethanol.” Applied
Biochemistry and Biotechnology, 57-58(1),:
157-170.
Xu, L. y U. Tschirner, U. “Improved ethanol
production from various carbohydrates
through anaerobic thermophilic
co-culture.” Bioresource Technology,
102(21),: 10065-10071.
Yang, C., Z. Shen, Z. et al. (2008). “Effect and
aftereffect of irradiation γ radiation pretreatment
on enzymatic hydrolysis of wheat
straw.” Bioresource Technology, 99 (14),:
6240-6245.
Yoon, H. (1998). “Pretreatment of lignocellulosic
biomass by autohydrolysis and aqueous
ammonia percolation.” Korean Journal of
Chemical Engineering, 15(6),: 631-636.
Zhao, J. y L. Xia, L. (2009). Simultaneous saccharification
and fermentation of alkalinepretreated
corn stover to ethanol using a
recombinant yeast strain. Fuel Processing
Technology, 90 (10), 1193-1197.
Zhao, Y., Y. Wang, Y. et al. (2008). Enhanced
enzymatic hydrolysis of spruce by alkaline
pretreatment at low temperature. Biotechnology
and bioengineering, 99 (6), 1320-1328.
Zheng, P., L. Fang, L. et al. “Succinic acid production
from corn stover by simultaneous
saccharification and fermentation using
Actinobacillussuccinogenes.” Bioresource
Technology, 101 (20):, 7889-7894.
Zhiguang Zhu. (2009). Investigating biomass
saccharification for the production of cellulosic
ethanol. Disponible en: www.scholar.
lib.vt.edu/theses/available/etd-05042009-
143825/unrestricted/zhiguangzhumsthesis-
2.pdf

Citado por

Sistema OJS 3 - Metabiblioteca |